COVID Drug Strategies Since the emergence of COVID-19, the biopharma industry has been working tirelessly to develop both preventive and therapeutic interventions. SARS-CoV-2 is part of the coronavirus family. Although viruses in this family vary in terms of disease caused and how they pass from host to host, their basic structure is the same. Coronaviruses are made up of three key parts; - Genetic information contained in RNA - A viral envelope - · Spike proteins ### We consider four drug development strategies; - 1: Block Viral Replication - 2: Prevent Cell entry - 3: Reduce Immune response - 4: Drug Repurposing ### 1: Block Viral Replication. Despite our limited knowledge of SARS-CoV-2, pathogenic coronaviruses have been widely studied since the SARS coronavirus outbreak of 2003 and the MERS outbreak which began in 2012. While there are differences in both infectivity and mortality rates between SARS/MERS and the current SARS-CoV-2 virus, the genome size (30 kb) and organisation of replicase-transcriptase and structural protein Orfs used in all three viruses is highly conserved. Therefore, SARS and MERS research has already helped in identifying potential viral and host drug targets to block coronavirus replication. ### 2: Prevent Cell Entry. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. ### 3: Reduce Immune Response. The severity and outcome of COVID-19 might be associated with the excessive production of proinflammatory cytokines; "cytokine storm," leading to an acute respiratory distress syndrome. Immune - modulatory or immune - suppressive treatments such as Hydroxychloroquine, Interleukin (IL)-6 and IL-1 antagonists, might be considered as treatment choices for COVID-19, particularly in severe disease. ### 4: Drug Repurposing. Leverage drugs and biomolecules previously reported to have activity against related coronaviruses. SARS-CoV-2 and severe acute respiratory syndrome–associated coronavirus (SARS-CoV) have >90% sequence identity in their essential enzymes and share the same entry receptor. Their close genetic relationship suggests that drugs effective against SARS-CoV (and potentially other coronaviruses) might be effective against SARS-CoV-2. ### **Analysis - Four Ways of Treating COVID 19** Some of the drugs being developed to attack the disease and the SARS-CoV-2 virus that causes it. **Strategy 1 - Block Viral Replication** | Drug | Action | Company/Lab | Status | |--------------------------------|-------------------------------|--|-----------------| | Remdesivir | Disrupt viral RNA synthesis | U. of North Carolina
Vanderbilt University
Gilead Sciences | Clinical trials | | EIDD-2801 | Disrupt viral RNA synthesis | Emory University
U. of North Carolina
Vanderbilt University
Ridgeback Biotherapeutics | Clinical trials | | Danoprevir-Ritonavir | Inhibit viral protease enzyme | Ascletis Pharma | Clinical trials | | RNAi Experimental
Compounds | Block viral RNA synthesis | Alnylam Pharmaceuticals
Vir Biotechnology | Early Research | ### **Strategy 2 - Prevent Entry Into Cells** | Drug | Action | Company/Lab | Status | |-------------------------------------|-----------------------------------|---|------------------------------------| | APNO1 | Decoy cell receptor | Apeiron Biologics | Clinical trials | | Multiple Human
Antibody Cocktail | Antibodies neutralize virus | Regeneron | Clinical trials planned for Summer | | Monoclonal Antibody
Candidates | Antibodies neutralize virus | Vir Biotechnology
Biogen
WuXi Biologics | Clinical trials planned | | TAK-888 | Modified antibodies against virus | Takeda | Preclinical | ### **Strategy 3** - Reduce Hyperimmune Response and Acute Respiratory Distress | Drug | Action | Company/Lab | Status | |-----------------------|--|---------------------|-----------------| | Kevzara (sarilumab) | Antibodies block IL-6 immune cell signal | Regeneron
Sanofi | Clinical trials | | Actemra (tocilizumab) | Antibodies block IL-6 immune cell signal | Genentech
BARDA* | Clinical trials | | Remestemcel-L | Stem cells modulate immune system | Mesoblast NIH** | Clinical trials | | Xeljanz (tofacitinib) | Inhibit inflammatory cells | Pfizer | Clinical trials | $^{{}^*\}text{U.S.}$ Biomedical Advanced Research and Development Authority ^{**}National Institutes of Health **Strategy 4 - Drug Repurposing Treatments/Combinations in Development** | Candidate | MoA/Indication | Status/Clinical Trials | Sponsor/
Producer | |--|--|--|--| | Kaletra (lopinavir/
ritonavir)
Combinational therapy | HIV protease inhibitor
HIV-1 infection | > 10 latest stages clinical studies
(Including combinations with other
drugs)
NCT04321174
NCT04255017
NCT04307693 | AbbVie | | COVID-19 antibody
therapy | antibody | Development stage | AbCellera
Eli Lilly | | TMC-310911 (ASC-09) | Stem cells modulate immune
system | Mesoblast NIH** | Clinical trials | | Ganovo (Danoprevir) | Hepatitis C virus protease
inhibitor
Hepatitis C | Phase 4 Clinical Study
In combination with other drugs
NCT04291729 | Ascletis,
The Ninth Hospital of
Nanchang | | Galidesivir (BCX4430) | Nucleoside RNA polymerase
inhibitor
Yellow Fever | Advanced development stage | BioCryst
Pharmaceuticals | | Candidate | MoA/Indication | Status/Clinical Trials | Sponsor/
Producer | |---|--|---|---| | BOLD-100 | Inhibit stress-induced
upregulation of GRP78
Cancer drug | Suggested | Bold Therapeutics | | Leronlimab (PRO 140)
Humanized monoclonal
antibody | Binds to CCR5
HIV, cancer | Initiation of Phase 2 Clinical Study | CytoDyn Inc. | | Ivermectin | Anti-parasitic drug | Preclinical study | Doherty Institute
Monash University in
Australia | | Fingolimod | Sphingosine 1-phosphate
receptor modulator
Multiple sclerosis | Phase 2 Clinical Study in China
NCT04280588 | First Affiliated Hospital
of Fujian Medical
University | | Thalidomide | MoA is not fully understood | Phase 2 Clinical Trials in China
NCT04273581
NCT04273529 | First Affiliated Hospital
of Wenzhou Medical
University | | Remdesivir (GS - 5734) | Block RNA polymerase
Ebola | Orphan Drug Designation for Gilead
9 clinical studies worldwide
NCT04323761
NCT04257656
NCT04315948 | Gilead Sciences | | Truvada (emtricitabine
+ tenofovir)
Combinational therapy | Non-nucleoside reverse
transcriptase inhibitors
HIV infection | In preparation | Gilead Sciences | | Triazavirin | inhibits RNA synthesis | Phase 3 Clinical Study in China
ChiCTR2000030001 | Health commission of
Heilongjiang province | | Baricitinib | JAK/NAK inhibitor
Rheumatic Disease | Phase 3 Clinical Study in Italy
NCT04320277 | Hospital of Prato | | Prezista/ Prezcobix
(darunavir + cobicistat) | Protease inhibitor
HIV infection | Phase 3 Clinical Studies
NCT04304053 in Spain | Janssen
Pharmaceuticals
Fundacio Lluita | | Combinational therapy | | 3Cclinical tStudies in China
NCT04252274
ChiCTR2000030259
ChiCTR2000029541 | Contra la SIDA,
Medical Institutions in
China | | Chloroquine | Endosomal acidification fusion
inhibitor
Anti-malarial | > 10 studies worldwide
> 10 Clinical Studies in China
ChiCTR2000029609
NCT04261517 | Medical institutions
worldwide | | Azithromycin | Antibiotic | > 10 trials in combination with other
drugs
NCT04322396
NCT04321278
NCT04322123 | Medical institutions
worldwide | | Remestemcel-L
Mesenchymal stromal
cell (MSC) | Migrate to the site of inflammation to reduce the production of proinflammatory cytokines. Indication: Acute Graft versus Host Disease | Phase III Clinical Trials
NCT04371393 | Mesoblast, Inc. / Icahn
School of Medicine at
Mount Sinai | | Candidate | MoA/Indication | Status/Clinical Trials | Sponsor/
Producer | |--|--|--|--| | Favipiravir (T-705) | Block RNA polymerase
Flu drug | Approved in China
Clinical studies in China, Japan, and
Italy
ChiCTR2000029996
ChiCTR2000030894 | Produced by Fujifilm
Toyama Chemical | | Kevzara (sarilumab)
Monoclonal antibody | Anti - IL-6
Rheumatoid arthritis | Phase 2, 3 Clinical Study
NCT04315298 | Regeneron
Pharmaceuticals,
Sanofi | | EIDD-2801 | Block RNA polymerase | Suggested | Ridgeback
Biotherapeutics
Developed by Emory
University | | Activase | Tissue plasminogen activator
Stroke drug | Suggested | Ridgeback
Biotherapeutics
Developed by Emory
University | | Actemra (tocilizumab)
Monoclonal antibody | anti-IL-6R
Rheumatoid arthritis | Approved in China
5 Clinical Studies in Denmark, Italy,
China
NCT04317092
NCT04331795 | Roche,
Medical institutions
worldwide | | Umifenovir (Arbidol) | Membrane fusion inhibitor | Latest stages clinical studies in China
(Including combinations with other
drugs)
ChiCTR2000029621
NCT04260594 | Ruijin Hospital,
Other institutions in
China | | TAK-888
(Plasma-derived
antibodies) | Polyclonal
hyperimmune globulin (H-IG) | Development stage | Takeda | | Ruxolitinib (Jakafi, Jakavi) | Inhibitor of Janus-associated
kinases (JAK1 and JAK2)
Myelofibrosis | Clinical Study in China
Ruxolitinib combined with stem cell
therapy
ChiCTR2000029580
Tongji Hospital, Hubei, China | Tongji Hospital, Hubei,
China
Manufacturer - Incyte
Corporation | | Camostat mesylate
(Foypan) | inhibit SARS-CoV-2 Spike
protein-initiated membrane
fusion | Phase 1, 2 Clinical Study in Germany
NCT04321096 | University of Aarhus
Manufactured in Japan | | Nafamostat mesylate
(Fusan) | inhibit SARS-CoV-2 Spike
protein-initiated membrane
fusion
Acute pancreatitis | Completed preclinical study in Japan | University of Tokyo | | Hydroxychloroquine
(Plaquenil) | Endosomal acidification fusion
inhibitor
Anti-malarial
Rheumatoid arthritis treatment | > 10 Clinical Studies worldwide
10 Clinical Studies in China
NCT04321278
NCT04261517
ChiCTR2000029868 | | ## Summary ### **Challenges** - The issue of hyperinflammation versus viral replication. - The timing for immunomodulation therapy. - The pharmacokinetics of oral medications in crucially ill patients. - Impaired clearance of the drugs. ### **Summary** Ending the pandemic and preventing its return is assumed to require an effective vaccine and antiviral drugs. None of the approaches discussed are cures. The drugs under development may reduce COVID-19 severity when symptoms first arise. It is hoped that combination therapy may help by limiting symptoms and prevent hospital admissions. #### References - Kindrachuk, J et al. Coronaviruses: An Overview of Their Replication and Pathogenesis Methods Mol Biol. - Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395: 565-574 - US Biomedical Advanced Research & Development Authority - National Institute of Health - Scientific American Evolution Search Partners are a boutique search firm operating globally across USA, Europe and APAC, providing 'business critical' teams to the Biomanufacturing and Cell Gene Therapy sector. With 25 years acclaimed international Biotechnology experience, we offer strong global networks, exceptional technical and business acumen, and operate as an experienced, competent, trustworthy search partner.